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Let f be an analytic function on a domain D … C 2 {.} and rn the rational
function of degree n with poles at the points Bn={bni}

n
i=1, interpolating to f at the

points An={ani}
n
i=0 … D. A fundamental question is whether it is possible to

choose the points An and Bn so that rn converges locally uniformly to f on D for
every analytic function f on D. In some situations the interpolation points must be
allowed to approach the boundary of D as n tends to infinity and then we cannot
obtain convergence for every analytic f on D. If we restrict the growth of f(z)
when z goes to the boundary of D, we still have some positive convergence results
that we prove here. © 2001 Academic Press

Key Words: multipoint Padé type approximation; logarithmic potentials; sweep-
ing out.

1. INTRODUCTION

Consider a domain D … Cb=C 2 {.} and an analytic function f on D.
Let for each n \ 1, An={ani}

n
i=0 … D and Bn={bni}

n
i=1 … Cb be two collec-

tions of points (some ani or some bni may coincide). Then there exists a
unique rational function rn, of order n (the degree of the numerator and the
denominator are at most n), with poles at Bn, interpolating to f at An,
counting multiplicities (see [8, Section 8.1]). If An and Bn have some
common points, we cancel them in the construction of rn. The question of
study in this paper is whether, given D, it is possible to choose poles Bn and
interpolation points An in such a way that for all analytic f, rn converges to
f, uniformly on compact subsets of D, as n tends to infinity.
This type of problem has been studied by Walsh (see [8]) and Bagby (see

[4]) and more recently by Ambroladze and Wallin in the papers [1], [2]
and [3]. If we consider interpolating polynomials (which corresponds to
the case where all poles are at infinity) on a bounded simply connected
domain D … C, and apply results from [1] and [3] we have the following.
Such interpolation points, guaranteeing convergence for all analytic

functions on D exist if and only if the boundary of D is an analytic curve.



We also have that these interpolation points must satisfy the following
necessary and sufficient condition.

1. 1n \ An … D.
2. If a is a weak star limit for any subsequence of the point counting

measures

an=
1

n+1
C
n

i=0
dani ,

then the sweeping out measure (to be defined in Section 2.1) aŒ of a onto
“D is the equilibrium measure on “D.
The reason for this is as follows. If condition 1 above does not hold, then

by [3, Theorem 5], there exists, for an arbitrary point z0 ¥ D01n \ 1 An an
analytic function f on D such that

lim sup
nQ.

|f(z0)−rn(z0)|=..

If instead condition 1 above does hold, then by [1, Theorems 1 and 2], we
get convergence for every analytic f on D if and only if condition 2 above
also is true. Note that the sequence of measures an above always has a
weak star convergent subsequence, and note also that given a unit measure
a with supp a … D, there is, by Lemma 4.2 in this paper, a sequence of
normalised point counting measures an converging to a in the weak star
sense. We see that the kind of interpolation points that we seek, exist if and
only if there is a measure a, with supp a … D such that aŒ is the equilibrium
measure on “D, but by [3, Theorem 1], such a exist if and only if “D is an
analytic curve.
If we, instead of demanding convergence for any analytic function f on

D, we consider only bounded analytic functions on a simply connected
domain D, or analytic functions dominated by some locally integrable
function, then Theorem 3.1 in this paper tells us that there are interpolation
points guaranteeing convergence, no matter how nonsmooth the boundary
may be. The crux is, as we saw in the reasoning above, that for non analy-
tic boundaries we have to let the interpolation points approach the
boundary, while for analytic boundaries, the interpolation points can be
separated from the boundary. When we let the interpolation points
approach the boundary, it is natural to expect (and formally proven in [3,
Theorem 5]) that we cannot obtain convergence for any analytic function
on D. Analytic functions can behave very wildly near the boundary and we
may get ‘‘bad information’’ by interpolating at such points.
Returning to the more general case of rational interpolation, we have a

similar situation. If we allow the interpolation points to approach the
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boundary of D, we cannot get convergence for all analytic functions on D
(by the same theorem). There is however in [2, Theorem 1], a condition on
the poles Bn and interpolation points An that guarantee convergence for
every bounded analytic function on D, where the interpolation points are
allowed to approach “D. The main theorem of this paper (Theorem 3.2)
tells us that under rather general assumptions, we can find poles and
interpolation points satisfying that condition.

2. DEFINITIONS AND NOTATION

If not explicitly stated otherwise, this is our notation:

Cb The extended complex plane, Cb=C 2 {.}.
E A Borel subset of Cb.
D A domain in Cb.
K A compact set in Cb.
An, Bn Sets of points in Cb, where An={ani}

n
i=0, Bn={bni}

n
i=1.

m A probability measure on Cb.
supp m The support of the measure m.
dz The Dirac measure at z.
an, bn The normalised point counting measures of An and Bn,

an=
1
n+1;n

i=0 dani , bn=
1
n;n

i=1 dbni .
mn |Qw

g
m Weak star convergence of measures, > f dmn Q > f dm for

every continuous function f on Cb.
Um(z) The logarithmic potential of the measure m, Um(z)=

− > log |z− t| dm(t) dm(z).
I(m) The energy of the measure m, I(m)=> Um(z) dm(z)=

− >> log |z− t| dm(t) dm(z).
gD(t, z) The Green function of the domain D, “D non-polar, with

pole at z ¥ D.
|| · ||K The supremum norm over K.
C(K) The space of continuous functions f: KQ R.

2.1. Sweeping out of Measures
We define the sweeping out of a measure using the solution to Dirichlet’s

problem and the Riesz representation theorem.
For a regular domain D in Cb, and a finite positive measure m with

supp m … D̄, we can define a positive linear functional L on C(“D) in the
following way. For every f ¥ C(“D) there is a unique bounded harmonic
function hf on D such that limzQ z hf(z)=f(z) for every z ¥ “D (see [5,
Cor. 4.2.6]). We define L by

fW Lf=F hf dm.
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From the maximum principle ([5, Th. 3.6.9]) we see that f \ 0 implies
Lf \ 0. Also, f — 1S Lf=m(D̄). By the Riesz representation theorem
([5, Th. A.3.2]) there is a unique measure mŒ on “D for which

Lf=F f dmŒ,

for all f ¥ C(“D) and mŒ has the same mass as m.

Definition 2.1. mŒ is the sweeping out or balayage of m from D̄, onto
“D. If m is not supported in D̄, then we mean by mŒ the sum of the measures
obtained by sweeping out m, restricted to the different connected compo-
nents of Cb 0“D, onto “D respectively.
When “D and supp m … D̄ are compact subsets of C the following holds

true (see [7, Th 4.7]):

(i) UmŒ(z) [ Um(z)+c(m) for all z ¥ C.
(ii) UmŒ(z)=Um(z)+c(m) for every z ¨ D.

The constant c(m) is nonnegative. If D is bounded c(m)=0 and if . ¥ D
then c(m)=> gD(t,.) dm(t).
The sweeping out process is linear ((m+n)Œ=mŒ+nŒ) and continuous in

the sense that mn |Qw
g
m as nQ. implies m −n |Qw

g
mŒ as nQ..

In the case of a point mass m=dz, z ¥ D it is well known that d −z is the
harmonic measure on “D evaluated at z and in the special case where z=.
we get d −.=y, where y is the equilibrium measure on “D.

3. RESULTS

Theorem 3.1. Let D … C be a simply connected domain and g: DQ C be
a locally integrable function on D. Then there exist interpolation points
{ani}

n
i=0, n=1, 2, 3, ... such that for an arbitrary analytic function f: DQ C

for which |f/g| is bounded, we have pn Q f locally uniformly on D, where pn
is the (unique) polynomial of degree not greater than n interpolating to f at
{ani}

n
i=0. The convergence is uniform, also in the following sense. Given an

e > 0, a locally integrable function g on D, a positive constant C and a
compact set K … D, there is a natural number N such that if z ¥K and
n > N, then

|f(z)−pn(z)| < e,

for all analytic f on D satisfying |f/g| < C.
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Remark 3.1. Taking g to be a constant we can guarantee convergence
for all bounded analytic functions f on D.

Remark 3.2. The theorem does not tell us if the convergence is locally
uniform with geometric degree of convergence, which is usually the case in
this type of situations.

In [2] the authors examine what happens in the case of rational inter-
polants (and where D is not necessarily simply connected) when we let the
interpolation points approach the boundary of D. The main result of that
paper is the following. Assume that “D is bounded and a(D) > 0 for any
weak star limit point of {an}

.

1 and assume also that

lim
nQ.

[sup
z ¥ “D

(Ua −n (z)−Ub −n (z))]=0, (1)

where a −n and b −n denote the sweeping out onto “D of an and bn; respec-
tively. Then, for rn the rational interpolant with poles at Bn interpolating to
f at An, we have rn Q f in D, as nQ., for any bounded, analytic function
f in D. The convergence is locally uniform with geometric degree of
convergence.
The following theorem states a general situation, for which we can find

poles and interpolation points satisfying (1).

Theorem 3.2. Let D … C be a hounded regular domain. If a and b are
probability measures with a(D)=1, b(Cb 0D)=1 and aŒ=bŒ (where aŒ and
bŒ denote the sweeping out onto “D of a and b, respectively), then there
exist points {ani}

n
i=0 in D, with an |Qw

g
a and points {bni}

n
i=1 in Cb 0D with

bn |Qw
g
b as nQ., such that for some subsequence (1) holds.

In [2, Example 2], it is shown that the condition aŒ=bŒ alone, is not
sufficient to guarantee convergence for every bounded f, but the question
if condition (1) (which implies aŒ=bŒ) is necessary, was left open. This
example shows that it is not.

Example 3.1. Let D={|z| < 1}. For each n ¥N, let all bni=. for
i=1, ..., n and ani=0, i=0, ..., n−1, ann=an, where |an |Q 1 as nQ..
We get an=

n
n+1 d0+

1
n+1 dan and for z ¥ “D

Ua −n (z)=
n

n+1
Ud −0 (z)+

1
n+1

Ud −an (z)

=
n

n+1
Uy(z)+

1
n+1

Udan (z)=
n

n+1
Uy(z)−

1
n+1

log |z−an |,

where y is the equilibrium measure on “D. Also b −n=y for all n.
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Fix a z ¥ “D. We get

lim sup
nQ.

[sup
z ¥ “D

(Ua −n (z)−Ub −n (z))]

\ lim sup
nQ.

(Ua −n (z)−Ub −n (z))

=lim sup
nQ.

1 −1
n+1

Uy(z)−
1

n+1
log |z−an |2 .

So, by letting an approach z fast enough, we can make this, quantity
arbitrarily large or even infinite, i.e. (1) is not satisfied.
Now let K … D be a compact set and f a bounded analytic function on

D. Let c be a positively oriented circle, with center at the origin and radius
r < 1 such that K is contained in c. Let Cn be a positively oriented circle
with center at the origin, radius less than one and containing c and the
point an inside Cn. For n large, an is outside of c and we can let Cn be a
positively oriented circle with center at an and with a radius so small that
Cn does not intersect c or Cn. For z ¥K and Hn(z)=<n

i=0(z−ani)=
zn(z−an) we have by the Hermite interpolation formula ([8, p. 50]) that

f(z)−rn(z)=
1
2pi

Hn(z) F
Cn

f(t) dt
tn(t−an)(t−z)

=
1
2pi

Hn(z) F
c

f(t) dt
tn(t−an)(t−z)

+
1
2pi

Hn(z) F
Cn

f(t) dt
tn(t−an)(t−z)

,

if n is large.
For t ¥ c, z ¥K, the expression f(t)/((t−an)(t−z)) is bounded as nQ.

and the first integral is less than a constant times r−n. Since |Hn(z)|
=|z−an | · |z|n, |z−an | < 2 for all n and |z|/r < 1, we get that the first term
tends to zero as n approaches infinity, uniformly and with geometric degree
of convergence on K.
For the second term we have

1
2pi

Hn(z) F
Cn

f(t) dt
tn(t−an)(t−z)

=Hn(z) Res 1 f(t)
tn(t−an)(t−z)

, an 2

=Hn(z)
f(an)

(an)n (an−z)
=−zn

f(an)
(an)n

.
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Take an R > r. Since f is bounded and since |z| < r < 1 and |an | > R for big
n, we get | zan | <

r
R < 1 for big n, so the second term also tends to zero as n

approaches infinity, uniformly and with geometric degree of convergence
on K.

4. PROOFS

We start with an elementary lemma.

Lemma 4.1. Let mn, n=1, 2, 3, ... be probability measures, all having
support in a fixed compact subset L of C, and converging to some measure m
in the weak star sense. If K … C is a compact set with L 5K=”, then
Umn Q Um uniformly on K as nQ..

We omit the proof of this lemma, but note that it follows from the
definition of Um and the uniform continuity of the logarithmic kernel,
log |z− t|, on K×L.
We can now prove Theorem 3.1. The idea is based on the fact that to get

convergence on a given compact subset K of D we can by Walsh’s classic
theorem ([8, Chapter VII]) choose the interpolation points on the bound-
ary of K asymptotically as the equilibrium distribution of K. To get con-
vergence on the whole of D we repeat the construction for gradually larger
and larger K but making sure that we do not approach the boundary of D
too fast.

Proof (Proof of Theorem 3.1). Let Kj, j=1, 2, 3, ... be a sequence of
compact sets with Kj … D, Kj …Kj+1 and 1 Kj=D. Choose compacts
Fj …Kj such that Fj … Fj+1, 1 Ff=D and Fj 5 “Kj=”. Let Cj … D0Kj
be a simple, closed, rectifiable curve, winding once around every point in
Kj. Since g is locally integrable, Cj can be chosen in such a way that g is
integrable also on Cj. Given n+1 points {ajni}

n
i=0 lying inside of Cj and p jn

the polynomial of maximum degree n interpolating to f at {ajni}
n
i=0 we

have for z inside Cj that

R jn(z) :=f(z)−p jn(z)=
1
2pi

F
Cj

H j
n(z)

H j
n(t)

·
f(t)
t−z

dt, (2)

where H j
n(z)=<n

i=0(z−ajni).
Let {ajni}

n
i=0 be a Fekete (n+1)-tuple for Kj (see [5, p. 152 Defini-

tion 5.5.1]) and let ajn=
1
n+1;n

i=0 dajni . We have that anj=|Qw
g
yj, as nQ.
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(see [5, p. 159]), where yj is the equilibrium measure for Kj. Since |f/g| is
bounded and g is integrable on Cj we get by (2), that for large j

||R jn ||Fj [ Cj max 3 :H
j
n(z)

H j
n(t)
: : z ¥ Fj, t ¥ Cj 4=: E jn, (3)

where the constant Cj depends on g and j but not on f (the constant that
bounds |f/g| depends on f but is independent of j, so by letting Cj grow
with j as jQ. the inequality will hold for large j independent of f).
Defining E jn in this way we get ||R jn ||Fj [ E jn. Raising to the power 1/n and
taking logarithms we get

1
n
log E jn=

1
n
log Cj+

n+1
n

max{Uajn (t)−Uajn (z) : z ¥ Fj, t ¥ Cj}.

We have supp ajn … “Kj for every n ([5, p. 152]), “Kj 5 Fj=” by
assumption and “Kj 5 Cj=” and so we have by Lemma 4.1 that

lim sup
nQ.

1
n
log E jn [ max{Uyj (t)−Uyj (z) : z ¥ Fj, t ¥ Cj}. (4)

The next step is to show that the right hand side of (4) is negative. By
Frostman’s theorem ([5, p. 59]), we have Uyj (z)=maxz ¥ C Uyj (z)=I(yj),
for z ¥ Fj and since Uyj is harmonic on C0Kj we have, by the maximum
principle and the fact that Cj … C0Kj is compact, that for some ej > 0 it
holds that Uyj (t) < I(yj)− ej for all t ¥ Cj. Hence

lim sup
nQ.

1
n
log E jn < 0,

so E jn Q 0 (geometrically) as nQ..
Let {nj}, nj < nj+1 be a sequence of natural numbers such that E jn < 1/j

for n \ nj. Given n there is a unique j(n) with nj(n) [ n < nj(n)+1. We choose
our interpolation points {ani}

n
i=0 in D as ani=aj(n), n, i. We have

Rn(z) :=f(z)−pn(z)=R j(n)n (z), z ¥ Fj(n),

so for n > nk we get

||Rn ||Fk [ ||Rn ||Fj(n)=||R j(n)n ||Fj(n) [ E j(n)n < 1/j(n)

and since j(n)Q. as nQ. the first statement of the theorem is proved.
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The second statement of the theorem follows from the fact that given a
constant C > 0, we can, according to (3), find a J ¥N such that
||R jn ||Fj [ E jn for all f satisfying |f/g| [ C, if j > J. L

For the proof of Theorem 3.2 we need another elementary lemma, about
discretization of measures. The proof is omitted.

Lemma 4.2. Let m be a probability measure on Cb. Then there are
measures

mn=
1
n
C
n

i=1
dani , {ani}

n
i=1 … supp m,

such that mn|Qw
g
m as nQ..

The lemma is a consequence of the fact that a continuous function on
the Riemann sphere is also uniformly continuous there.
We proceed by proving Theorem 3.2. The idea of the proof is similar to

the proof of Theorem 3.1 in the following sense: For a measure a with
supp a … D the condition aŒ=bŒ together with supp an … supp a as in
Lemma 4.2, implies (1). In the theorem however, we require only a(D)=1,
so to get (1) we must make sure that the points {ani}

n
i=0 which form the

support of an, do not approach the boundary too fast when n tends to
infinity. We do this by making sure that in the nth step, the support of an is
contained in some given compact subset of D. When n tends to infinity we
gradually let the support grow towards the boundary of D, but slowly
enough so that (1) still will be valid.

Proof (Proof of Theorem 3.2). Using Lemma 4.2 we can choose points
{ãni}

n
i=0 in D̄ such that for an := 1

n+1;n
i=0 dãni we have an|Qw

g
a. Using the

same Lemma again, we choose {bni} … Cb 0D such that for bn :=
1
n;n

i=1 dbni ,
we have bn |Qw

g
b (which implies that b −n |Qw

g
bŒ).

For every j ¥N, let Kj … D, Kj …Kj+1, be compact sets with 1Kj=D.
We write an=m jn+n jn where m jn=an|Kj and n

jn=an|D̄0Kj .
Fix a point a in K1 and let a jn :=m jn+c jnda, where c jn :=n jn(Cb) (so we

‘‘move’’ all points ãni outside Kj to a fixed point a in D). Taking a sub-
sequence and relabelling if necessary, there are measures m j and n j such that
m jn|Qw

g
m j and nnj|Qw

g
n j as nQ., where

supp m j …Kj, supp n j … D0Kj

and

a=m j+n j.
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Let M=maxz, t ¥ D̄ log |z− t|. We have, for z ¥ D̄, that

Un j(z)=−F log |z− t| dn j(t) \ −M· n j(Cb)

and since the right hand side tends to zero as j approaches infinity, we have
that

lim sup
jQ.

−Un j(z) < 0, (5)

holds uniformly on D̄. Also note that 0 [ c jn=nnj(Cb) [ an(D0Kj), so (by
[7, Section 0, Theorem 1.3])

lim sup
nQ.

c jn [ a(D0Kj). (6)

The expression Um jn−c jn log | · −a|−Ub −n is upper semicontinuous on “D
which is compact, so we can let z jn ¥ “D be such that

Um jn(z jn)−c jn log |z jn−a|−Ub −n (z
jn)=sup

z ¥ “D
(Umjn(z)−c jn log |z−a|−Ub −n (z)).

By taking a subsequence and relabelling if necessary, we have for
some z j ¥ “D that z jnQ z j as nQ.. By the principle of descent (see [6,
Appendix III])

lim sup
nQ.

−Ub −n (z
jn) [ −UbŒ(z j).

Using this, together with the continuity of Um j on “D, Lemma 4.1 and (6),
we see that given j ¥N, there exists an Nj, with Nj+1 >Nj, such that for
n \Nj we have

Umj(z jn)−Ub −n (z
jn) < Umj(z j)−UbŒ(z j)+1/j, (7)

|Umjn(z)−Umj(z)| < 1/j, z ¥ “D (8)

and

0 [ c jn < a(D0Kj)+1/j. (9)

This gives us an increasing sequence {Nj} …N and for every n \N1 we
have a unique jn with Njn [ n < Njn+1. Also, limnQ. jn=..
Let an :=a jnn. Note that an has the desired form as in the statement of

the theorem, because since m jnn is an restricted to Kjn we have that for some
ani ¥ D, an=a jnn=m jnn+c jnnda=

1
n+1;n

i=0 dani (if we have been taking sub-
sequences and thus relabelling, an=

1
n −+1

;n−
i=0 danŒi where nŒ \ n). We have

also that an |Qw
g
a as nQ..
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For z ¥ “D we have Ua −n (z)=Uan (z) and UaŒ(z)=Ua(z). We use this
together with (8) and (7) to get:

sup
z ¥ “D

(Ua −n (z)−Ub −n (z))=sup
z ¥ “D

(Uan (z)−Ub −n (z))

=sup
z ¥ “D

(Umjnn(z)−c jnn log |z−a|−Ub −n (z))

=Umjnn(z jnn)−c jnn log |z jnn−a|−Ub −n (z
jnn)

< Umjn(z jnn)+
1
jn
−c jnn log |z jnn−a|−Ub −n (z

jnn)

< Umjn(z jn)+
1
jn
−c jnn log |z jnn−a|−UbŒ(z jn)+

1
jn

=Ua(z jn)−Unjn(z jn)−c jnn log |z jnn−a|−UbŒ(z jnn)+
2
jn

=−Unjn(z jn)−c jnn log |z jnn−a|+
2
jn
.

Using (5) and (9) we then see that

lim sup
nQ.

[sup
z ¥ “D

(Ua −n (z)−Ub −n (z))] [ 0.

It remains to show that

lim inf
nQ.

[sup
z ¥ “D

(Ua −n (z)−Ub −n (z))] \ 0. (10)

Assume the opposite. We would, for a subsequence {nk} and all z ¥ “D,
have Ua −nk (z)−Ub −nk (z) < c < 0. That implies, if y is the unit equilibrium
measure on “D and Uy=V on “D, that

F Vd(a −nk −b
−

nk )=F (Ua −nk −Ub −nk ) dy < c < 0

by Fubini’s theorem. Letting kQ. we get aŒ ] bŒ which contradicts our
assumption, so (10) must hold. L
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